PIARC Kuala Lumpur Semina 2006. 8. 1

Road Network Operation ITS Project Evaluation

Tsuneo KATO

PIARC TC1.4 Committee WG(3)

Changes in road environment

Shift from construction to road network operation

- Rising public awareness to the sustainable road facility
- Urgent needs of efficient network operation to solve traffic problems

Rising demand for balanced use of transportation modes

- Increase in inter-modal trips
- Global warming problem encourage modal shift to public transportation

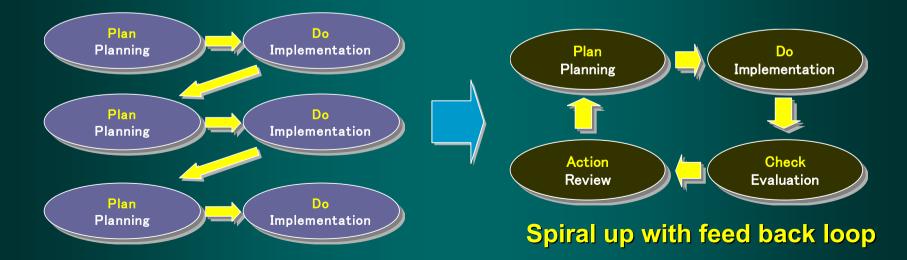
Public-sector reform is going on in many countries

- Incorporate private-sector's management methods into public sectors
- Main philosophies; Results-oriented management & Customer-first policy
- New Public Management (NPM), the philosophy originated in UK in early 1980's, has influenced many countries

Background of ITS project evaluation

Road policy evaluation proposes project evaluation

Policy


Program

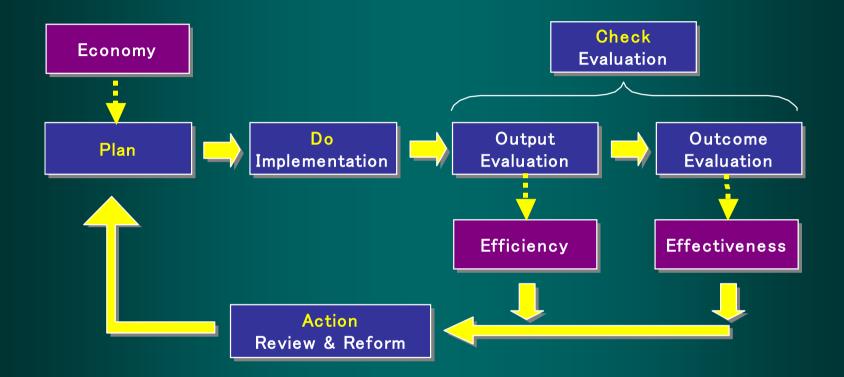
Project

- Projects are the components of a program and a policy

Results-oriented management based on the post-project evaluation

- The management in the past didn't pay much attention on postproject evaluation, but on pre-project assessment.

* Widely used two(2) objectives


1. Look outside; Enhance accountability to the public

- to ensure transparency of road network operation policy
- to gain public consensus on the policy

2. Look inside; Enhance implementation efficiency and upgrade technologies and services

- to maximize benefits to be brought by investment
- to develop ITS technology and services on a step-by-step basis

wo loops in Plan-Do-Check-Action(PDCA) cycle

Decision be made on which PDCA loop is prioritized

- PDCA cycle and benchmarking are the key factors

Which is to be prioritized, "Output" or "Outcome" evaluation ?

Output Evaluation	Outcome Evaluation
Output; Direct changes caused by ITS	Outcome; Impacts on objectives
Appropriate for project-level evaluation	Appropriate for policy- & program- level evaluation
Used for evaluating implementation efficiency of a project	Used for ensuring accountability
More focused on ITS technology performance	Comparison between output and benchmarked target

Benchmarking is a key element in the outcome evaluation

1) Benchmarking from the good lessons-learned in the past

2) Benchmarking as a strategic target

Continue

Example;

Project target; Improve safety

ITS functional target; Speed reduction by enforcement using variable speed limit signs

Performance Indicators				
Output (Efficiency) Outcome (Effectiveness)				
Changes in; - Vehicle speeds - # of lane changes - Violation rates - Conflict rates - Driver's awareness	Impacts on; - Accidents and accident rates - Fatalities/injuries and fatality/injury rates - Road user satisfaction			

Note; Hard to put outcome evaluation into results-budgeting

- Effectiveness sometimes comes out long time after project implementation
- Uncertainty still remains in some cause-and-effectiveness relationship

Other key factors of ITS project evaluation

Objective-based evaluation rather than tool-based

- ITS project generally consists of various ITS tools
 - ⇒ Objectives of ITS projects need to be clearly defined

Comprehensive evaluation rather than detailed evaluation

- Detailed evaluation, which emphasizes quantification of outcomes, may incur much man-power and cost for evaluation
- Now, it is hard to quantify all outcomes into monetary terms
 - ⇒ Recent trend is to do comprehensive evaluation

Continue

Selection of appropriate evaluation items and indexes

Direct Impacts	Indirect Socioeconomic Impacts
- Impact evaluation on safety, environ-	- Market evaluation
ment and efficiency	- Financial evaluation
- Public acceptance & User satisfaction	- Institutional & regal evaluation
- Technical evaluation	- Human-machine interface evaluation
- Cost/benefit evaluation, etc.	- Technical feasibility evaluation, etc.

Example; Traffic efficiency Indicators

Evaluation Items		Performance Indicators			
Project Objectives	ITS Functions	Output (Efficiency)	Outcome (Effectiveness)	Economy	
		Changes in; - Traffic demand - Vehicle speeds during peak hours -Travel time loss(Delay) - Trip length - Throughputs - Number of bottleneck sections - Stability of traffic flow - Perceived traffic fluency	Changes in; - Travel time - # of congestions - Time duration of traffic congestion - Vehicle delay - Public acceptance and road user satisfaction	- Benefits and costs analysis	

Theoretical approach to the selection of ITS tools - Safety

			Traffic	Automatic	Electronic	Incident	Traffic & Traveler	• • • • • • • • • • • • • • • • • • •
Objectives of ITS Projects			Management	Enforcement	Payment	Management	Information	Management
		ITS Functions	-Variable message signs -Ramp control -Adaptive signal control -Area signal control -Intelligent vehicle speed adaptation -Intelligent road markings, etc.	-Speed Enforcement -Stop/Yield Enforcement -Lane enforcement -Vehicle Crime Enforcement etc.	-Road user charging -Congestion charging -Heavy vehicle charging -Multi-purpose Payment, etc.	-Incident detection -Emergency vehicle priority -Mobilization and Response	-On-board traffic information & route guidance -Variable message signs -Pre-trip traveler information, etc.	-Parking space guidance -Car-park & Roadside security
	Reduce Traffic Accidents	Reduce Dangerous Driving Behavior	*	*			*	
		Displace Vehicles from an Area	*		*			
		Reduce Secondary Accidents	*	*		*	*	*
		Reduce effects of incident and maintenance works	*				*	
	Improve Accident Survival	Improve Incident Detection & Response Times				*		
	Public Transport Security	Reduce Crime & Fear of Crime		*				*
		Reduce Crime & Fear of Crime						

Case study ; M25 Controlled Motorways – London UK

- Since 1995, Controlled Motorways has been operational on the western part of the M25, a dual-4-lane motorway.
- The objective is to optimize traffic flow, thereby reduce congestion.
- ITS employed is speed enforcement with variable message signs that can provide vehicle-activated speed limits.

Results of evaluation —M25 Controlled Motorways

Impact Area	Indicators of Impacts	Overall Improvement (Y/N)
Journey times	 Increase in peak-time journey times on the clockwise carriageway and decrease on the anticlockwise carriageway. 	N
Safety	 10% reduction in injury accidents. 20% drop in the ratio of damage only to injury accidents. 	Y
Emissions	– Decrease in overall emissions between 2% and 8%.	Y
Throughput	 No increase in the peak 1-hour throughput. Increase in total throughputs during the 5-hour peak periods by approximately 1.5%. 	N
Speed limit compliance	- Reduction of 5% in drivers exceeding the 40mph speed limit.	Y
User reaction	The Controlled Motorways scheme is well accepted and there is a perception of key benefits.	Y

(Note) The costs outweigh the benefits for this case. But, some benefits do not currently have a monetary value. If all the benefits are taken into account, the project at further sites is likely to be more favorable.

Results of evaluation from Data Base – Safety

ITS Projects	Country	Output Evaluation (Efficiency)	Outcome Evaluation (Effectiveness)	Traffic Management	Traffic Enforcement	Electronic Payment	Incider Managerr
omated Traffic	France	Considerable reductions of speeding	Not available		-Speed enforcement		
ed-over-distance prcement		Experiment shows reduction of vehicle speeds from 100 km/h to 80 km/h.	Not available		-Speed enforcement		
ctronic Tolling and ment in ndheim	Norway		Accidents have fallen by 60 - 70% on the new sections of road, mainly because the mixed traffic pattern has been removed.			-Congestion charging -Multi-use payment	
lligent Speed		Minor differences between the systems, with an average speed reduction of 3-4 km/h on stretches between intersections	Not available	-Intelligent vehicle speed adaptation			
folk Interactive er Optic Signs	UK	Average reduction in speed of 4.3mph.	 National Research has shown a drop in 1mph equates to 5% reduction in accidents, so on average there is a potential reduction in accidents of 21.5%. At 21 sites, there were one third less injury accidents overall. 	-Speed activated signs			
DOT in Tronto	Canada	Comparison between SCOOT and fixed signal timing plans indicated; 1. Vehicle speeds were improved by 3% to 16%. 2. Left-turn violation was reduced by 71%.	Rear-end collision was reduced by 24%.	-Area traffic signal -Bus priority traffic signal			
n Cities Ramp ering	USA	Not available	# of crushes was redices by 26% with ramp metering.	-Ramp metring			

Conclusions

ITS project evaluation;

- An element of network operation policies/programs evaluation

Three view points needed;

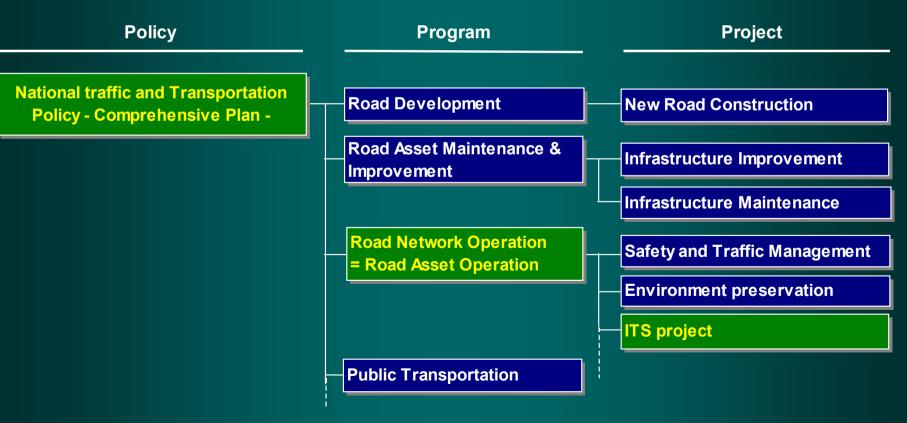
- Economy, Efficiency and Effectiveness
- Post-project evaluation;
 - A key factor of PDCA loop

Evaluation planning and ITS project planning should be done simultaneously

Budget arrangement for evaluation

- Past practices indicate this to be 3% to 5% of a project cost

Needs of R&D


- ITS evaluation is still on the development

End of Presentation

Many thanks for your attention ! See you again in Paris in September 2007

Vhat is road network operation ?

- Defined as all traffic management and user support activities intended to permit, improve, or facilitate the use of an existing network, whatever its conditions of use.
- Three levels ; Policy, program and project level

Results of evaluation from Data Base – Traffic efficiency

S Projects	Country	Output Evaluation (Efficiency)	Outcome Evaluation (Effectiveness)	Traffic Management	Electronic Payment	Traff Trave Inform
ss Control shared Road e in elona		 Car traffic within the controlled zone has been reduced by 78% and vehicle travel times within the zone have fallen by 18%. Occupancy of parking spaces is less inside the zone and greater outside it. The number of traffic violations fell after the shared lane was introduced. 	There are considerable benefits in managing peak-hour traffic flows.	-Access control to historic spot -Lane control		-Variab messag signs
ANCE	USA		Data demonstrated that motorists could reduce travel time by 4% under normal or recurring conditions; however, a small sample size and relatively high standard deviation formulated the basis for this result.			-On-boa ruoute- guidanc
am Road Charging		A 10% increase in pedestrian activity - each day between 13,000 and 19,000 pedestrians use the same stretch of road, which is wide enough for just one vehicle at a time. A steady increase in use of the Cathedral Bus	In the first 3 months, traffic levels within the zone during charging hours fell from 2,000 to 200 vehicles a day - a drop of 90%.	-Rising bollard	-Access control charging	
on estion jing		 50,000 fewer cars per day but only 4000 fewer people Increase in patronage against a service increase of 23%. Approximately 1/2 of the increase in patronage is 	 1. 14% reduction in vehicle journey times. 2. Reliability has improved by an average of 30%. 3. 30% reduction in congestion within the zone (after one year) 4. Within the charging zone there were marked improvements in both the main indicators of bus service reliability. disruption due to traffic delays fell by 60%. 		-Congestion charging	
OT in Tronto		 Intersection stops were reduced by 18% to 29%. Vehicle stops were reduced by 10% to 31%. 	 Ramp queues were reduced by 14%. Vehicle travel time was improved by 6% to 11%. Intersection delay was reduced by 10% to 42%. Left-turn delay was reduced by 0% to 35%. Vehicle delay was reduced by 6% to 26%. Public transport travel time was reduced by 2% tyo 6%. Public transport delay was reduced by 30% to 40%. 	-Adaptive traffic signal -Bus priority traffic signal		
Cities Ramp ⁻ ing	USA	1. Traffic volume increased by 14% with ramp metering which results in annual saving of 25,121 hours.	1. Travel time decreased by 22% with ramp metering.	-Ramp metring		